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The nonlinear evolution of a continuous spectrum of travelling waves resulting from 
the growth of unstable disturbances in circular Couette flow has been investigated. 
Numerical solution of the governing integro-differential equations for different initial 
conditions shows that the equilibrium states of Taylor-vortex, wavy-vortex or spiral- 
vortex flows are not unique, but depend on the initial disturbance. The presence of 
multiple solutions at a fixed Reynolds number for a given Taylor-Couette geometry 
has been known since Coles’ seminal contribution in 1965. The current study indicates 
that the equilibrium state of flows on a stable bifurcation branch is a natural 
consequence of nonlinear wave resonance and is dependent on the initial conditions. 
The resulting wavenumber can take any value within an accessible finite band. Since 
such multiple solutions have also been found numerically for mixed-convection flows 
and experimentally for several other flows, there is evidence to support the conclusion 
that a non-uniqueness in the sense of Coles is a generic property for all fluid flows. 

1. Introduction 
The study of the stability and transitions of flow between concentric rotating 

cylinders is a topic of fundamental importance in fluid dynamics. Taylor (1923) 
demonstrated theoretically and experimentally that circular Couette flow becomes 
unstable when the speed of the inner cylinder is increased beyond a certain critical 
value. His experiments showed that the instability leads to a new steady axisymmetric 
secondary flow in the form of regularly spaced vortices in the axial direction. Coles 
(1965) observed that this axisymmetric Taylor-vortex flow becomes unstable as the 
angular speed of the inner cylinder is increased further, beyond a second critical value. 
This instability results in a wavy-vortex flow, with azimuthally propagating waves 
superposed on the Taylor vortices. Coles found that the spatial structure of the wavy- 
vortex flow, characterized by axial and aximuthal wavenumbers, is not a unique 
function of the Reynolds number and boundary conditions. Different equilibrium 
states could be achieved at the same Reynolds number by approaching the final 
Reynolds number with different acceleration rates, and by rotating and then stopping 
the outer cylinder. Fenstermacher, Swinney & Gollub (1979) studied the transition to 
turbulence in Taylor-Couette flow using a laser-Doppler anemometer. They also found 
that the different spatial states had different spectra and transition Reynolds numbers. 
Presumably, these different final states at the same value of the Reynolds number are 
functions of the initial conditions. The multiple equilibrium states in Taylor-Couette 
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flow are studied in this investigation by means of a formulation which considers 
nonlinear interactions among waves of all possible wavenumbers. 

The non-uniqueness of the equilibrium state observed by Coles (1965) was 
subsequently observed in time-independent Taylor-vortex flow by Snyder (1 969), 
Burkhalter & Koschmieder (1974) and Benjamin (1978). Snyder (1969) found that, 
while the wavelength at the onset of instability was unique, Taylor-vortex flows with 
different wavenumbers could be obtained at the same value of the Reynolds number 
by varying the initial conditions. He observed that there was a band of accessible 
wavenumbers, smaller than the band that can grow according to linear theory. This is 
known as a sideband instability. Burkhalter & Koschmieder (1974) found that the 
range of axial wavelengths for stable Taylor-vortex flow is quite large. Benjamin (1978) 
observed different spatial states even in an annulus so short that only three or four 
vortices could be accommodated. The nonlinear interactions among Taylor vortices 
with different wavenumbers were studied by Yao & Ghosh Moulic (199 .5~)  using a 
weakly nonlinear theory formulated with a continuous spectrum. They represented the 
disturbance by a Fourier integral and derived an integro-differential equation for the 
evolution of the amplitude density function of a continuous spectrum. Numerical 
solution of this integro-differential equation indicated that the equilibrium state of the 
flow depends on the wavenumber and amplitude of the initial disturbance, as observed 
experimentally. Their results also show that sideband instability is a consequence of 
nonlinear resonance among interacting waves. Yao & Ghosh Moulic (1995a) show 
that the quadratic inertia terms in the Navier-Stokes equations can be interpreted as 
nonlinear wave resonances of triads, quartets, and so forth. They further showed that 
nonlinear wave resonance is the fundamental mechanism responsible for the occurrence 
of side-band instability, secondary instability, flow bifurcation, and turbulent 
energy cascade. 

The linear stability of circular Couette flow to non-axisymmetric disturbances has 
been studied by DiPrima (1961) and by Krueger, Gross & DiPrima (1966). Using the 
small-gap approximation, they found that, when the outer cylinder is at rest, the 
critical Taylor number for non-axisymmetric disturbances was higher than the critical 
Taylor number for axisymmetric disturbances. The instability of Taylor-vortex flow to 
wavy-vortex disturbances has been studied by Davey, DiPrima & Stuart (1968) using 
the small-gap approximation. They considered the weakly nonlinear interactions 
between two axisymmetric Taylor-vortex modes and two non-axisymmetric instability 
modes of circular Couette flow. They found that the Taylor-vortex flow becomes 
unstable at a critical Taylor number which is about 8 %  above the critical value at 
which Taylor vortices first appear. They also showed that, after instability, a new 
equilibrium flow with wavy boundaries between cells is established. Marcus (1984) 
solved the time-dependent Navier-Stokes equations numerically using a spectral 
method to simulate Taylor-Couette flow. He computed several stable axisymmetric 
Taylor-vortex flows and several stable non-axisymmetric wavy-vortex flows that 
correspond to one travelling wave. His results suggest that the travelling waves arise 
from a secondary instability caused by the strong radial motion in the outflow 
boundaries of the Taylor vortices. 

In this investigation, we study the nonlinear stability of circular Couette flow to non- 
axisymmetric disturbances. The disturbance is represented in its most general form by 
a Fourier integral over all possible axial wavenumbers and a Fourier series over the 
integer azimuthal wavenumbers. This allows energy transfer among all possible 
interacting waves; consequently, it can predict the evolution of a disturbance from an 
arbitrary initial waveform. The Fourier components of the disturbance quantities are 
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expanded in a series of the linear-stability eigenfunctions. The eigenfunction expansion 
reduces the Navier-Stokes equations to a system of nonlinearly coupled integro- 
differential equations for the aniplitude-density functions of a continuous spectrum 
(Yao & Ghosh Moulic 19956). 

The in tegro-differential equations have been solved numerically with different initial 
conditions. The infinite range of integration is truncated to a finite range, and the 
integrals are discretized using the trapezoidal rule. The numerical approximations 
effectively reduce the Fourier integrals to Fourier series ; consequently, the numerical 
solutions show a periodicity in the axial direction. It is important to have the 
computational domain large enough to include all instability waves and their 
harmonics in order to realistically simulate the physics of the problem. 

The results have been checked with the direct numerical simulation of the time- 
dependent Navier-Stokes equations using a Fourier-Chebyshev spectral method. It is 
worth noting that the numerical solution of the integro-differential equations is 
computationally more efficien than a Fourier-Chebyshev spectral method (Yao & 
Ghosh Moulic 1994). The method of eigenfunction expansion employed in the present 
investigation uses the same scalar amplitude-density function for each mode for the 
velocity components and pressure. Thus, the three momentum equations and the 
continuity equation are reduced to a single set of equations for the amplitude-density 
functions. This results in a substantial reduction of the computational effort. The 
eigenfunction expansion eliminates one of the major difficulties associated with the 
direct numerical simulation of the incompressible Navier-Stokes equations, namely 
the requirement of a simultaneous enforcement of the no-slip boundary condition and 
the incompressibility constraint. Kleiser & Schumann (1 980) devised an influence- 
matrix method to accommodate these requirements. Their algorithm requires the 
solution of six Helmholtz equations at each time step. In the current investigation, the 
eigenfunctions used in the expansion are solutions of the linearized Navier-Stokes 
equations ; hence, they individually satisfy the incompressibility constraint and the no- 
slip boundary conditions. This results in a considerable simplification of the numerical 
procedure. Therefore, the CPU time required for the numerical solution of the set of 
governing integro-differential equations is only one-sixth of the CPU time required for 
the direct numerical simulation using a Fourier-Chebyshev spectral method. The 
current formulation provides a new efficient algorithm for the solution of the 
Navier-Stokes equations, and can be used for the direct simulation of turbulent flows 
which are homogeneous in two directions. The extension of the formulation to 
problems without this limitation is straightforward. 

Results have been obtained for rotationally symmetric Taylor-vortex flow at R e  = 
88.1 and '1 = 0.5 and non-rotationally symmetric wavy-vortex or spiral-vortex flows at  
Re = 162 and y/ = 0.874, where y/ is the ratio of the radii of the inner and outer 
cylinders, and Re is the Reynolds number. The results indicate that the equilibrium 
state of Taylor-vortex, wavy-vortex and spiral-vortex flows depends on the initial 
conditions, as observed experimentally, and is not unique. Multiple equilibrium states 
with different wavenumbers are found to exist at fixed values of 7 and the Reynolds 
number. These equilibrium states are stable to perturbations of small amplitudes and 
are physically realizable. We have also found that the stable equilibrium state can be 
shifted to a new stable equilibrium state by a finite-amplitude disturbance. The results 
suggest that the selection of the equilibrium wavenumber is a natural consequence of 
nonlinear wave resonance which depends on the initial conditions. The existence of 
multiple stable equilibrium states implies that the torque induced by the fluid motion 
cannot be uniquely determined. Since an initial condition, or an ambient disturbance 
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in a real engineering system, cannot usually be determined owing to the presence of 
background noise, an uncertainty associated with non-uniqueness of the flow and lack 
of knowledge of the initial conditions which influence the equilibrium state of the flow 
should be taken into account when using any accurately measured values of the torque 
in engineering design and practice. 

The solution of the integro-differential equations for rotationally symmetric Taylor- 
vortex flow has revealed a new feature. The results indicate that the Taylor-vortex flow 
is not a purely stationary wave, but consists of standing waves with amplitudes which 
are much smaller than the amplitude of the dominant stationary vortex for Reynolds 
numbers in the range of Taylor-vortex flows. Any disturbance which destroys the 
symmetry of the standing waves can lead to spiral flows. 

Spiral-vortex flows are found experimentally with a rotating outer cylinder at a 
much higher Reynolds number than was used in our computations. They seem to be 
excited by the end conditions of a long annulus. Our model assumes an infinite-long 
annulus and cannot model the end effects. Our results with the initial condition of 
single travelling waves along the axial direction show that spiral-vortex flows are 
possible equilibrium states with a stationary outer cylinder at lower Reynolds number 
than the experimental value. The phenomenon seems to indicate that the number of 
possible equilibrium states is enormous, if we know how to excite them. 

We would like to emphasize that our computational domain in physical space is 
several times longer than the wavelengths of all the instability waves. This allows us to 
study nonlinear interaction among a large number of wave components. This is why 
we found multiple solutions in our computation. The equilibrium amplitudes of most 
wave components is very small. However, these wave components participate in 
nonlinear wave resonance, thereby influencing the final equilibrium state. Our 
computational model is almost comparable to those used for direct numerical 
simulations of turbulence for low Reynolds number flows and so is the required CPU 
time. The average CPU time on a CRAY C90 for our computation is about thirty 
minutes per case, and the required CPU time to obtain all eigenfunctions of the 
associated linear stability problem is less than a minute. 

2. Analysis 
We consider the flow between two concentric cylinders with radii r1 and r2, 

respectively. The inner cylinder rotates with an angular speed Q, while the outer 
cylinder is at rest (figure 1). The equations describing the flow are the continuity and 
Navier-Stokes equations. These equations may be written in dimensionless form as 

v - u  = 0, 1 
au 1 -+u-vu = - v p + - v u ,  
at Re j t 

where u = (u,v, w), the velocity components in the radial, azimuthal and axial 
directions respectively, p is the pressure, and t is the time. All lengths have been scaled 
by the distance between the cylinders, d = r2 - r l ,  the velocity components by rl Q, the 
time by r1 Old, and the pressure by pr,2Q2 where p is the fluid density. The Reynolds 
number is Re = Qr, d/v ,  where v is the kinematic viscosity. 

The boundary conditions are u = w = 0, v = 1 when r = ri and u = v = w = 0 when 
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FIGURE 1. Geometry and coordinates. 

r = r,,, where r ,  = r l /d  and ro = r J d .  Equations (1) admit a steady solution u = w = 0, 
v =  V(r) = A , r + B , / r ,  where A ,  = -g/( l+g) ,  B,> = t~ / [ ( l+y) ( l -g )2J  and 7 = rl/r2 
is the radius ratio. The stability of this circular Couette flow is studied by superposing 
a disturbance and writing the disturbed velocity field as (u ,  v, w) = (u’, V(v)+v’, w’), 
where the primes denote disturbance quantities. Note that the magnitude of the 
disturbances does not have to be small in our formulation. Following Yao & Ghosh 
Moulic (19954, the disturbance quantities are expressed in their most general form 
as integrals over all possible axial wavenumbers and Fourier series over the integer 
azimuthal wavenumbers. Thus, the azimuthal velocity is written as 

0 3 C x  

d ( r ,  4, z, t )  = C B(k, n, r ,  t )  dk. - (2) 
--1: L 

The disturbance equations in Fourier space may be expressed as 

where (tl, C2, Lig) = (t, 6, $), and Lj denote linear operators given by 

2 V(r) 6 in V(r) t 1 r r 
L,(k,n,G,p) = +D$--++, 

R e  

i l  [ 7 inV(r)6 
L2(k ,n ,G ,@)  = +-+ DV+- C+-, Re  r 
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and fij represent the nonlinear inertia terms in Fourier space defined by 
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Equation (4a)  may be expressed in convolution form as 
m m  

Mj(k ,n ,a(k , ,n , ) ,a (k-k , ,n-n , ) )dk , ,  (4 b) L gj(k, n, r, t )  = - c 
%,=-a 

where the operators Mj are given by 
M,(k, ~ 1 ,  ti(k,, n,) t2(k-kl, II -nl)) = D*[zi(k,, n,) zi(k-k,, n -n,)] 

inZ(k,, n,)O(k-k,,  n-n,) . 6(kl ,n , )6(k-k , ,n-nl )  
+1k$(k1,n,) zi(k-k,, n-n,)- , r r + 

Mz(k,n, t i (k , ,n,) , l i (k-k, ,n-n,))  = D*[zi(k,,n,), 6(k-k , ,n-n , ) ]  
inG(k,, n,) B(k - k,, n - n,) ti(/?,, n,) d(k - k, ,  II - n,) + ik$(k,, n,) 6(k- k,, n - n,) + r r > + 

M,(k,n,ri(k,, a,), f i (k-k , ,n-n , ) )  = D*[zi(k,, n, )+(k -k , ,n -n , ) ]  
ind(k,, n,) +(k - k, ,  n - n,) . 

r 
+ lk$(kl, n,) $(k - k,, n - n,), + 

and D* = D+ l/r .  Equations (3) have to be solved subject to the homogenous 
boundary conditions at r = ri and r = T o .  

The linear stability of the circular Couette flow may be studied by assuming the 
disturbance to be infinitesimally small, neglecting the nonlinear terms in equation (3), 
and expressing the Fourier components of the disturbance quantities in separable form 
as 

t;(k, n, r ,  t )  = C(k, n, r) eciW(lc, n)t ,  

where w(k, n) = wR(k, n)  + iw'(k, n) is the complex frequency for the wavenumbers 
(k, n), and the superscripts R and I denote the real and imaginary parts of the complex 
frequency. The linearized disturbance equations may be written as 

C(k, n, r )  inij(k, n, r) . + ik$(k, n, r) = 0, 
r 

Du"(k, n, r )  3- + 
r ( 5 )  

L,(k, n, E(k, n, r) ,p(k,  n, r)) = iw(k, n)  C(k, n, r) .  1 
Equations (5 )  with the appropriate homogeneous boundary conditions form an 
eigenvalue problem for the complex frequency w(k, n). 

The solution of the nonlinear disturbance equations (3) may be expressed as 

where &(k, n, r) is the eigenfunction of the linearized equations ( 5 )  corresponding to the 
rnth eigenvalue wm(k, n), and A,@, n, t )  is a time-dependent amplitude-density function. 
The eigenvalues of the linear stability operator are ordered so that w: 2 w: 3 w i  2.. . . 
Thus, the first eigenvalue represents the least stable or the most unstable mode. The 
eigenfunctions are normalized so that 

[I.",12 + lijmlz + lGmlz] r dr = 1. 
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A governing equation for the amplitude density functions is determined by substituting 
the eigenfunction expansion (6) into the disturbance equations (3) and using the 
orthogonality relation between the eigenfunctions C(k, n, r )  of the linearized equations 
( 5 )  and the corresponding adjoint eigenfunctions ut(k, 12, r )  = (ut(k, n, r),  d (k ,  n, r),  
wt (k ,  n, r ) ) .  We define an inner product between the vectors 2 and ut by 

(&, ut> = (22, ut)  + (6, c') + ( G ,  w t ) ,  

where the inner product between two scalar functions,f(v) and g(r)  is defined as 

J 

and the asterisk denotes a complex conjugate. If the adjoint eigenfunctions are 
normalized so that 

( u f , ( k  n, 4, tl,(k, n, 4) = Jl, m, 

where is the Kronecker delta, use of the orthogonality property of the 
eigenfunctions and the continuity equation yields the following system of equations for 
the amplitude-density function : 

dA, . 
-++W,A, dt = (u&,N).  

where A = (fil, f i 2 ,  fiJ. Using (4b), equation (7a)  may be expressed as 

U I  m , = l  m,=l  n , = - x  
where 

and 

where M = ( M I ,  M,, M3),  depending on the eigenfunctions of the linearized equations 
( 5 ) .  The details of the analysis can be found in Ghosh Moulic (1993). 

The eigenfunction expansion used in the current formulation implicitly assumes that 
the linear-stability operator has an infinite set of discrete eigenvalues and a 
corresponding infinite set of eigenfunctions which form a complete set. While there is 
no general proof of the completeness of the linear-stability eigenfunctions, it is worth 
pointing out that DiPrima & Mabetler (1969) have proved a completeness theorem for 
a general class of non-self-adjoint eigenvalue problems in a finite domain. Using this 
theorem, they have demonstrated that the linear-stability operator for the Taylor 
problem has a complete set of eigenfunctions. 

The eigenfunction expansion (6) has reduced the three momentum equations and the 
continuity equation to the system of integro-differential equations for the amplitude- 
density functions (7). Thus, a solutioii of (7) is a direct numerical solution of the 
Navier-Stokes equations. The linear terms on the left-hand side of (3), which include 
the convection and distortion of the disturbance waves by the mean flow and the 
diffusion of momentum, are reduced to a single term in (7) which describes the growth 
or decay of the wave in the generalized coordinates of the eigenfunctions. This 
simplification drastically reduces the CPU time required to complete the solution. 

The system of integro-differential equations (7) is solved numerically. The infinite 
range of integration in the Fourier integrals representing the disturbance of a 
continuous spectrum is truncated to a finite range. The Fourier integrals are discretized 
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using the trapezoidal rule with uniform mesh size Ak = 2k,,,/Nz, where k,,, is the 
absolute maximum wavenumber and N ,  is the number of waves in the axial direction. 
The infinite Fourier series in the azimuthal direction is also truncated to a finite series 
involving N4 terms. The eigenfunctions are obtained by solving the linear-stability 
equations by a Chebyshev collocation method using N ,  points, that is using N,-  1 
Chebyshev polynomials. A complex QZ algorithm (Moler & Stewart 1973) is used to 
determine the eigenvalues and eigenvectors. We sort the linear stability eigenmodes in 
increasing order of the imaginary part of the complex frequency, ol,(k,n).  A time- 
splitting scheme is used for the temporal discretization. The nonlinear terms are 
approximated by an explicit second-order-accurate Adams-Bashforth scheme, while 
the linear term is approximated by an implicit second-order-accurate Crank-Nicholson 
scheme. The time-splitting scheme has the dual advantage of avoiding iterations for the 
nonlinearities and avoiding a stringent Courant-number restriction for numerical 
stability due to linear terms. The convolution integrals are evaluated by a 
pseudospectral method using a fast Fourier transformation and aliasing errors are 
removed by padding using the two-thirds rule (Canuto et al. 1988). Several different 
grid sizes have been tested to ensure the convergence of the numerical computations. 
The results have also been checked with a direct numerical simulation of the time- 
dependent Navier-Stokes equations using the spectral method of Fourier-Chebyshev 
expansions starting with the same initial conditions. Complete agreement is found 
between these two numerical solutions. This is expected since both computations 
represent exact numerical solutions of the Navier-Stokes equations. The computations 
were performed on the CRAY C-90 supercomputer at the Pittsburgh Supercomputer 
Center. 

3. Results and discussion 
Results have been obtained for two different radius ratios 7 = 0.5 and 7 = 0.874. 

The radius ratio 0.5 corresponds to the apparatus used in the experiments 
of Snyder (1969), while 0.874 corresponds to the apparatus used by Coles 
(1965). Results are presented in figures 2 and 3 for 7 = 0.5 and Re = 88.1. Results 
obtained for 7 = 0.874 and Re = 162 are presented in figures 4-7. Linear-stability 
analysis indicates that for 9 = 0.5 and Re = 88.1, circular Couette flow is unstable to 
rotationally symmetric disturbances with axial wavenumbers lying between 1.6 and 5.6. 
At Re = 162 and 7 = 0.874, circular Couette flow is linearly unstable to disturbances 
with azimuthal wavenumbers 0, 1,2, 3,4, 5 and 6. The range of axial wavenumbers for 
linearly unstable disturbances lies between 1.5 and 5.75 for n = 0 and 1, between 1.75 
and 5.75 for n = 2, between 2 and 5.5 for n = 3, between 2.25 and 5.25 for n = 4, 
between 2.75 and 4.75 for n = 5, and between 3.5 and 3.75 for n = 6. The system of 
integro-differential equation (7 a) was solved numerically with different initial 
conditions using 20 eigenmodes for each wavenumber, that is using 20 terms in 
eigenfunction expansion given by equation (6). The integrals in (7a) were discretized 
by the trapezoidal rule using a uniform mesh size Ak = 0.25 for 7 = 0.5, Re = 88.1 and 
Ak = 0.5 for 7 = 0.874, Re = 162. The infinite range of integration was truncated to 
- 12 < k < 12, which was found to be adequate as the kinetic energies of the high- 
wavenumber modes were negligible. The infinite sum over the azimuthal wavenumbers 
was truncated to -20 < n < 20 for 7 = 0.874 and Re = 162. At Re = 88.1 and 7 = 0.5, 
circular Couette flow is linearly stable to non-rotationally symmetric disturbances, and 
the computations for this case were done assuming the disturbance to be rotationally 
symmetric in order to save computer time. 
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FIGURE 2. Evolution of the kinetic energy for Re = 88.1 and yl = 0.5: (a) for a single initial mode 
k = 3;  (b)  for a single initial mode k = 1.75; (c) for two initial modes at k = 3.25 and 3.5 where 
the initial amplitude at k = 3.5 is larger; (d) as (c) but the initial amplitude at k = 3.25 is larger. 
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3.1. Taylor-vortexpows 
Figure 2(a) shows the results of a numerical solution of the integro-differential 
equations (7a)  for 7 = 0.5 and Re = 88.1 in which the initial disturbance consists of a 
single dominant mode with wavenumber k = 3 .  The evolution of the kinetic energies 
of the dominant wave components is plotted in figure 2(a). For rotationally symmetric 
flows, the kinetic energy of the Fourier component with axial wavenumber k is given 
by 

Equation (8) accounts for the energy in both modes + k .  The kinetic energy of the 
circular Couette flow is substracted from the mean-flow kinetic energy in (8) so that 
E(0, t )  represents the kinetic energy associated with the distortion of the mean flow. 
The mode k = 3 is linearly unstable, and grows initially at the rate predicted by linear 
stability theory. Nonlinear interactions generate harmonics of the wave k = 3 and 
induce a mean-flow distortion (k  = 0). As the amplitude of the mode k = 3 increases, 
nonlinear effects become important and alter the growth rate, causing the mode to 
decay and eventually reach an equilibrium state. The energy is taken from the mean 
flow to support the disturbance wave and its harmonics. Table 1 shows the amplitudes 
&(k) = Ak I A,(k, n = 0)l of the first ten eigenmodes of the different harmonic 
components of the disturbance in this equilibrium state, where (A,@, n)l denotes the 
magnitude of the complex amplitude density function. Table 2 gives the corresponding 
frequencies dp,(k)/dt of the various eigenmodes, where p, = tan-' (ALIAR,) is the 
phase angle of the complex amplitude-density function A,(k,n).  A glance at table 2 
reveals that most of the eigenmodes have zero frequencies, that is they represent a 
stationary disturbance. However, some of the eigenmodes have non-zero frequencies. 
These eigenmodes represent a time-periodic disturbance. A close examination of table 2 
shows that the time-periodic eigenmodes for a given wavenumber occur in pairs which 
have frequencies of the same magnitude but opposite sign. For instance, the fourth 
and fifth eigenmodes of the wavenumber k = 3 have frequencies of 0.0105 and -0.0105 
respectively. These two eigenmodes represent travelling waves which move in opposite 
directions with the same wave speed. Other such pairs are formed by the fourth-seventh 
eigenmodes of the wavenumber k = 6, the sixth and seventh eigenmodes of the wave- 
numbers k = 9, and the sixth-ninth eigenmodes of the wavenumber k = 12. These 
eigenmodes in bold in table 2 can carry disturbances from the ends of an annulus into 
its interior. Table 1 indicates that the eigenmodes of each of these pairs have the same 
amplitude. For instance, the fourth and fifth eigenmodes of the wavenumber k = 3 
have the same amplitude 0.004497, the fourth and fifth eigenmodes of the wavenumber 
k = 6 have the same amplitude 0.005 12, etc. The superposition of all the eigenmodes 
results in a standing wave pattern. Any disturbance which destroys the symmetry of 
the standing waves can result in the addition of components of spiral flows. Table 1 
shows that the amplitudes of the time-periodic eigenmodes is an order of magnitude 
smaller than the amplitude of the stationary Taylor-vortex cell. This may explain why 
spiral flows have not been identified in experiments on rotationally symmetric 
Taylor-vortex flows. 

Figure 2 (b) shows the results of a numerical solution of the integro-differential 
equation (7a)  at Re = 88.1 and 7 = 0.5 starting with a single dominant mode with 
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m k = O  k = 3  k = 6  k = 9  k =  12 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.3641 x lo-' 
0.1957 x lo-" 
0.4582 x lo-' 
0.3007 x lo-" 
0.1273 x 
0.1076 x lo-'' 
0 . 1 4 1 6 ~  lo-' 
0.9047 x 
0.8591 x lo-' 
0.6120 x lo-'" 

0.8650 x 10-1 
0.8714 x 
0.4414 x lo-' 
0.4497 x 10 
0.4497 x 
0.5323 x lo-' 
0 5030 x lo-' 
0.2625 x 10 ' 
0.2808 x 10.' 
0.2142 x 

0 . 1 7 7 2 ~  10 ' 
0 . 1 1 4 5 ~  10-' 
0 5770 x lo-' 
0.5120 x 
0.5120 x 
0.1131 x 
0.1131 x lo-' 
0.5979 x lo-' 
0 . 1 5 8 4 ~  
0 5 8 4 2 ~  10 a 

0.3229 x 
0.1072 x 
0.8343 x lo-" 
0.5860 x lo-" 
0.4384 x lo-'+ 
0.2789 x 10- 
0.2789 x 
0.3127 x 
0.1638 x 
0.4279 x 

0.8255 x 
0.1986 x 
0.3437 x 
0.5571 x 
0.9338 x lo-* 
0.7535 x 
0.7535 x 
0.6523 x 
0.6523 x 
0.1827 x 

TABLE 1 .  Amplitudes of the different eigenmodes for Re = 88.1 and '1 = 0.5 for a single initial 
mode with k = 3 

m k = O  k = 3  k = 6  k = 9  k =  12 
1 2.45 x 3.44 x 10-I' 6.89 x 1.03 x lo-" 1.38 x lo-'' 
2 2.45 x 3.44 x lo-'' 6.89 x 1.03 x lo-" 1.38 x lo-" 
3 2.45 x 3.44 x lo-'' 6.89 x 1.03 x lo-" 1.38 x 
4 2.4s x 0.0105 -0.0097 1.03 x lo-'' 1.38 x 
5 7.45 x -0.0105 0.0097 1.03 x lo-'' 1.38 x lo-" 
6 2.45 x 3.44 x -0.0123 -0.0214 0.0235 
7 2.45 x 10- '6  3.45 x 10-12 0.0123 0.0214 -0.0235 
8 2.45 x 3.44 x lo-'? 6.89 x lo-'? 1.03 x lo-" 0.0151 

10 2.45 x 10 l6 3.44 x 6.89 x lo-" 1.03 x lo-" 1.38 x lo-'' 
TABLE 2. Frequencies of the different eigenmodes for Re = 88.1 and t/  = 0.5 for a single initial 

mode with k = 3 

9 2.45 x 10~'6 3.44 x lo-" 6.89 x lo-'' 1.03 x lo-" -0.0151 

wavenumber k = 1.75. The mode k = 1.75 is linearly unstable. However, unlike the 
previous case, the mode k = 1.75 decays to zero instead of growing to a finite- 
amplitude equilibrium state, while its harmonic k = 3.5, excited through nonlinear 
wave interaction, grows and reaches a supercritical equilibrium state. This result is in 
agreement with the Eckhaus and Benjamin-Feir side-band instability (Stuart & 
DiPrima 1978). The equilibrium state in this case also is a standing-wave pattern with 
a dominant stationary Taylor-vortex cell and some oscillatory modes of much smaller 
amplitudes. However, the dominant wave in this case has a wavenumber k = 3.5 in 
contrast to the previous case which had a dominant wavenumber k = 3.  

The results of figures 2(a)  and 2(b)  indicate that the equilibrium state of the flow is 
not uniquely determined by the Reynolds number and radius ratio of the cylinders, but 
depends on the waveform of the initial disturbance. Multiple stable equilibrium states 
can occur at the same Reynolds number. We have computed several stable rotationally 
symmetric Taylor-vortex flows for 9 = 0.5 and Re = 88.1 by integrating (7a)  starting 
with initial conditions consisting of a single linearly unstable mode of small initial 
amplitude. In all of these cases, the final equilibrium state was a monochromatic 
standing wave with a single dominant wavenumber and its harmonies. The standing 
wave pattern consists of a dominant stationary Taylor-vortex cell and some low- 
frequency oscillatory modes of much smaller amplitudes. Our computations indicate 
that the range of wavenumbers for stable supercritical Taylor vortices is narrower than 
the span of the neutral curve of linear stability theory, in agreement with the Eckhaus 
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FIGURE 3. Projection of the velocity vectors for Taylor-vortex flow onto the (Y, z)-plane for 
Re = 88.1, 7 = 0.5 and k = 3.5. 

and Benjamin-Feir sideband instability mechanisms (Stuart & DiPrima 1978). When 
the initial disturbance consists of a single dominant mode with wavenumber inside this 
narrow band, the initial wave remained the dominant wave in the equilibrium state, as 
in the case illustrated by figure 2(a) .  When the initial disturbance consists of a single 
dominant mode with wavenumber outside this narrow band but within the unstable 
region of linear theory, the initial wave decayed, the energy being transferred to a wave 
inside the narrow band, which is excited through nonlinear wave interaction, as in 
figure 2(b). This indicates that a side-band instability is a consequence of nonlinear 
wave resonance. 

We have examined the stability of some of these equilibrium states to finite- 
amplitude disturbances. Figures 2(c) and 2 ( d )  show the results obtained by perturbing 
a stable supercritical Taylor-vortex flow in which the critical wavenumber k = 3.25 was 
the dominant wave with a disturbance which consists of a linearly unstable eigenmode 
with wavenumber k = 3.5. Figure 2 ( c )  presents the results of a computation in which 
the initial perturbation was given an amplitude of 0.1, and indicates that the wave 
k = 3.25 decays to zero, while the wave k = 3.5 becomes the dominant wave in the 
equilibrium state. Figure 2(d )  presents the results of a similar computation in which the 
initial perturbation was given an amplitude of 0.075. In this case, the perturbation 
decays to zero, and the critical wave remains dominant in the equilibrium state. Figures 
2(c) and 2 ( d )  indicate that the dominant wavenumber in the equilibrium state can be 
shifted by a disturbance of sufficiently large amplitude. This phenomenon can have 
practical significance in engineering applications. 

Figure 3 shows the projection of the velocity vectors for the equilibrium state 
depicted by figure 2(b) onto the (Y, z)-plane. The first and second harmonic components 
of the velocity vectors are also shown in figure 3, along with the total velocity vectors. 
The figure indicates that the velocity vectors of the second harmonic near the inflow 
boundary of the Taylor vortex are opposite in direction to the velocity vectors of the 
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FIGURE 4. Projection of the velocity vectors for wavy-vortex flow onto (r,s)-plane for Re = 162, 
'v = 0.874. k = 3, n = 4 at equilibrium. 

first harmonic. The velocity vectors of the second harmonic near the outflow boundary 
of the Taylor vortex, on the other hand, are in the same direction as those of the first 
harmonic. Thus, the second harmonic component of the disturbance, generated 
through nonlinear wave interaction, tends to reduce the radial velocity of the inflow 
boundary jet between the Taylor vortices and increase the radial velocity of the outflow 
boundary jet. Thus, the outflow boundary has a larger radial velocity than the inflow 
boundary. This agrees with previous numerical results (Marcus 1984). 

It is worth noting that the results obtained using 15 and 20 eigenfunctions completely 
agree within the accuracy of our computation. A convergent result by a Fourier- 
Chebyshev spectral method, comparable to the expansion of 15 or 20 eigenfunctions, 
requires a minimum of 33 Chebyshev polynomials. The results presented in figures 2 
and 3 are obtained using 20 eigenfunctions in the expansion (6). The required number 
of eigenfunctions in (6) for different Reynolds number can be determined by demanding 
that the amplitudes of the highest few eigenmodes are sufficiently close to zero. This 
means that (6) must be convergent in order to provide physically meaningful results. 

We also found that, if the expansion (6) is severely truncated to, say, five or fewer 
eigenfunctions, the results are qualitatively different from the convergent results for the 
same initial conditions ; sometimes, the results may become numerically unstable and 
diverge. This is due to the lack of a dissipative mechanism in a severely truncated 
system. The higher eigenmodes corresponding to larger u', are more dissipative in 
nature, and a sufficient number of eigenmodes is needed for numerical stability. 
Physically, this implies that a substantial dissipation occurs non-isotropically within 
the range of wavenumbers for energy-containing eddies. Geometrically, one visualizes 
that a substantial dissipation occurs in thin layers whose sizes along the axial and the 
azimuthal directions are comparable to the energy-containing eddies. The equilibrium 
waves of larger wavenumbers are the harmonics of the dominant wave, are dynamically 
inert and are not particularly more dissipative. Their small amplitudes are the 
consequence of little energy being transferred to them nonlinearly. Similar conclusions 
can be made for the subharmonics of the dominant wave. 
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FIGURE 5. Projection of the velocity vectors for wavy-vortex flow onto (6,z)-plane for Re = 162, 
7 = 0.874, k = 3 and n = 4 at equilibrium. 

3.2. Wavy-vortex flows 

We have also computed several stable non-rotationally symmetric wavy-vortex flows 
for 7 = 0.874 and Re = 162. These equilibrium states consist of monochromatic 
travelling waves which propagate in the azimuthal direction. Thus, at a fixed location 
in space, these flows are periodic in time. A typical stable wavy-vortex equilibrium 
state with dominant axial wavenumber k = 3 and azimuthal wavenumber n = 4 is 
illustrated in figures 4 and 5.  Figure 4 shows the projection of the velocity vectors onto 
the ( r ,  2)-plane at a given azimuthal location at four different times t = 0, T/4, T/2 and 
3T/4 where T is the time period. The vertical line on the left-hand side represents the 
boundary of the inner cylinder, while the vertical line on the right-hand side represents 
the boundary of the outer cylinder. The flow is periodic in both the axial and azimuthal 
directions. In figure 4, two pairs of counter-rotating vortices, spread over two axial 
wavelengths h = 27c/k, have been plotted. The figure indicates that the position of the 
vortices oscillates with time. Thus, the counter-clockwise-rotating vortex in the 
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n 1 2 3 4  
Wavy vortex C,,,/C, 1 4 4  1 3 6  I 2 8  1.20 
Spiral G,,/G, 1 5 1  - - 132 

TABLF 3 Variation of toique for Re = 162 and ti = 0 874 with azimuthal wavenumber for k = 3 

bottom half of the figure at time t = 0 moves upwards in the axial direction to a higher 
position at time t = T/4, its previous position being taken up by a clockwise-rotating 
vortex which has also been displaced upwards in the axial direction by the wave 
motion. The counter-clockwise-rotating vortex continues to move upwards to a 
slightly higher axial position at time i = T/2, and then moves downwards to a lower 
axial position at time t = 3T/4. At time t = T, the vortex reaches its original position 
at  time t = 0, completing the cycle. As a consequence of the oscillation of the vortices, 
the surfaces separating the counter-rotating vortices are wavy. 

The projection of the velocity vectors for this equilibrium state onto the (Q, z)-plane 
is shown in figure 5 at three radial locations y = 0.25, 0.5 and 0.75, where y = 
(r-rTi) / (r0-r i )  is a normalized radial coordinate, at a particular instant of time. The 
figure demonstrates that the flow is invariant under the transformation Q --f Q + 27c/n, 
where n = 4 is the azimuthal wavenumber in the equilibrium state. Thus, the flow 
pattern is repeated as the azimuthal angle is increased by n/2. The figure also 
demonstrates that there is no net flow in the axial direction. The wave front does not 
propagate in the axial direction. A close examination of figure 5 reveals that the sense 
of rotation of the vortices in the radial plane y = 0.75 is opposite to the sense of 
rotation of the corresponding vortices in the radial plane y = 0.25. This agrees with the 
sense of rotation of the vortices indicated in the projection of the velocity vectors onto 
the ( r ,  =)-plane (figure 4). 

The numerical results show that the azimuthal modes n = I ,  2,  3 and 4 are stable 
equilibrium states, but n = 0, 5 and 6 are unstable. An initial condition with azimuthal 
mode 0, 5 or 6 will decay and shift to a stable azimuthal mode. Owing to the limited 
computational resources, we did not continue our computation in order to find out 
what final stable equilibrium azimuthal mode would result from these unstable initial 
azimuthal modes. We did not find two travelling azimuthal waves in our computation 
because the selected Reynolds number is too low for the existence of a modulated 
wavy-vortex flow. 

We have computed the torque on the inner cylinder for several wavy-vortex flows at 
Re = 162 and = 0.874. The ratio of the wavy-vortex torque Gu,,. and that for circular 
Couette flow G,. is given in table 3 for wavy-vortex flows with dominant axial 
wavenumber k = 3 and azimuthal wavenumbers M = 1, 2, 3 and 4. The table indicates 
that the torque on the inner cylinder decreases monotonically as the aximuthal 
wavenumber increases. The increase in torque of the wavy-vortex flow relative to the 
corresponding torque of the unstable circular Couette flow varies from 44% for the 
wavy-vortex flow with aximuthal wavenumber n = 1 to 20% for azimuthal 
wavenumber M = 4 and the same axial wavenumber. This agrees with the trend 
predicted by Eagles (1974). Table 3 demonstrates that the torque induced by the fluid 
motion cannot be determined uniquely owing to the existence of multiple equilibrium 
states. Since the equilibrium state is not unique and depends on the initial conditions 
which cannot usually be controlled in real engineering systems, an uncertainty 
associated with non-uniqueness should be considered when using any accurately 
measured value of the torque in practice. We have not done an extensive study of the 
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FIGURE 6. Projection of the velocity vectors for spiral-vortex flow onto the (Y, 2)-plane for 
Re = 162, 7 = 0.874, k = 3, II = 4 at equilibrium. 

variation of the torque among all possible equilibrium states with different axial and 
azimuthal wavenumbers at Re = 162 and 7 = 0.874 as the required computer time is 
prohibitively high. It is reasonable to expect a larger uncertainty than that indicated in 
table 3 if one considers the effect of variation in the axial wavenumber as well as the 
azimuthal wavenumber. At higher Reynolds numbers, the range of linearly unstable 
wavenumbers will be larger. Consequently, the uncertainty in the torque will be higher. 

3.3 .  Spiral-vortex @ows 

Spiral-vortex flows have been found when the outer cylinder is also rotating (Andereck, 
Liu & Swinney 1986). They found that two spirals exist separated by an interface 
located near the mid-plane. The interface varies with time and is not necessarily sharp. 
Sometimes the interface can be two to three times the size of the vortices and consists of 
the overlap of both the originally separate spirals. For the particular case, shown in 
their figure 4, the lower spiral eventually left the flow completely, leaving the upper 
spiral over the entire annulus. Their observation seems to suggest that spiral vortices 
resulted from the end condition of the rotating cylinders. 

Our model assumes infinite-long cylinders with a stationary outer cylinder and cannot 
model the end conditions. Since the linear-instability eigenfunctions consist a pair of 
travelling waves which form standing waves along the axial direction at Re = 162 and 
7 = 0.874, we select one travelling wave as the initial condition to destroy the symmetry 
of possible standing waves. This results in spiral vortices as shown in figure 6 for k = 3 
and n = 4. The wave travels one wavelength over a period along the axial direction. 
This results in a net upward mass flow. If we select a downward travelling wave as the 
initial condition, then a downwardly travelling spiral-vortex flow will be the stable 
equilibrium state. The projection of the velocity vectors for this equilibrium state onto 
the ($,z)-plane is shown in figure 7 at three radial locations y = 0.25, 0.5 and 0.75. 
It shares many similarities with those for a wavy-vortex flow. Two calculated torques 
G,, for n = 1 and 4 are higher than those for wavy-vortex flows and are included in 
table 3 .  

The spiral-vortex flow for such a low Reynolds number, 162, has not been confirmed 
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FIGURE 7. Projection of the velocity vectors for spiral-vortex flow onto the ($, z)-plane for 
Re = 162, r/ = 0.874, k = 3 and n = 4 at equilibrium. 

experimentally. Nevertheless, the numerical results seem to suggest that a richer flow 
structure may be possible than has so far been identified, if we known how to excite 
it. 

4. Conclusion 
The present study confirms that the supercritical equilibrium state of Taylor-vortex, 

wavy-vortex and spiral-vortex flows is not unique, but depends on the wave form of the 
initial disturbance, as observed experimentally. For all the equilibrium states in our 
study, the magnitude of the mean-flow distortion was larger than the amplitude of the 
waves. This is because energy, supplied by the external torque acting on the inner 
cylinder, is taken from the mean flow to support the disturbance wave and its 
harmonics. The solution of the integro-differential system (7) demonstrates that a 
rotationaliy symmetric Taylor-vortex flow is not a pure stationary wave, but is 
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composed of a dominant stationary vortex and some low-frequency oscillatory modes 
of small amplitudes whose superposition leads to a standing wave pattern. These 
oscillatory modes have not been identified in experiments on rotationally symmetric 
Taylor-vortex flow, possibly because of the small amplitude and low frequency of these 
wave components. 
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